Szostak Nobel prize in medicine

Jack W. Szostak, a geneticist at Harvard Medical School, is one of three co-winners of the 2009 prize.

Jack Szostak

Professor of genetics Jack W. Szostak has won the Nobel Prize in Physiology or Medicine with Elizabeth H. Blackburn (University of California, San Francisco) and Carol W. Greider (Johns Hopkins School of Medicine). The three scientists were recognized for their work on how chromosomes are protected by telomeres and the enzyme telomerase. Szostak's home page at Harvard Medical School details his recent work on the synthesis of life on earth: "the related challenges of understanding the origin of life on the early earth, and constructing synthetic cellular life in the laboratory." His lab home page is here; he is also a Howard Hughes Medical Institute investigator, and  has a biographical page there, emphasizing his current work on the origins of life and the re-creation of the first steps in biological synthesis. Harvard's Origins of Life Initiative is described here; Szostak is one of the affiliated faculty members.

According to the Nobel press release, the trio have solved a critical part of a fundamental problem in biology: "how the chromosomes can be copied in a complete way during cell divisions and how they are protected against degradation. The Nobel Laureates have shown that the solution is to be found in the ends of the chromosomes--the telomeres--and in an enzyme that forms them – telomerase."


The explanation continues:

The long, thread-like DNA molecules that carry our genes are packed into chromosomes, the telomeres being the caps on their ends. Elizabeth Blackburn and Jack Szostak discovered that a unique DNA sequence in the telomeres protects the chromosomes from degradation. Carol Greider and Elizabeth Blackburn identified telomerase, the enzyme that makes telomere DNA. These discoveries explained how the ends of the chromosomes are protected by the telomeres and that they are built by telomerase.


If the telomeres are shortened, cells age. Conversely, if telomerase activity is high, telomere length is maintained, and cellular senescence is delayed. This is the case in cancer cells, which can be considered to have eternal life. Certain inherited diseases, in contrast, are characterized by a defective telomerase, resulting in damaged cells. The award of the Nobel Prize recognizes the discovery of a fundamental mechanism in the cell, a discovery that has stimulated the development of new therapeutic strategies.

 

Related topics

You might also like

Teaching Through War With AI

Harvard Graduate School of Education students examine the use of AI in wartime Ukraine.

New Faculty Deans Announced for Currier House

Education professor Nancy Hill and her husband Rendall Howell will start their roles in July.

Mark Carney on the Limits of Soft Power

At the 2026 Davos summit, the Canadian prime minister echoes Harvard’s Joseph Nye.

Most popular

Zelia Nuttall

Brief life of a remarkable anthropologist (1857-1933)

Harvard Students Restore the Old Burying Ground

Members of the Hasty Pudding Institute help revive the graves of former Harvard presidents.

Why Men Are Falling Behind in Education, Employment, and Health

Can new approaches to education address a growing gender gap?

Explore More From Current Issue

A stylized illustration of red coral branching from a gray base, resembling a fantastical entity.

This TikTok Artist Combines Monsters and Mental Heath

Ava Jinying Salzman’s artwork helps people process difficult feelings.

Black and white photo of a large mushroom cloud rising above the horizon.

Open Book: A New Nuclear Age

Harvard historian Serhii Plokhy’s latest book looks at the rising danger of a new arms race.

Four young people sitting around a table playing a card game, with a chalkboard in the background.

On Weekends, These Harvard Math Professors Teach the Smaller Set

At Cambridge Math Circle, faculty and alumni share puzzles, riddles, and joy.