Medical alumnus Ralph M. Steinman wins Nobel Prize in physiology or medicine

The Harvard Medical School alumnus wins the award three days after his death.

The 2011 Nobel Prize in Physiology or Medicine was jointly awarded to three pioneers in immunology: one-half to Ralph M. Steinman, M.D. ’68, senior physician, Kunkel professor, and head of the Laboratory of Cellular Physiology and Immunology at Rockefeller University; and one-half jointly to Jules A. Hoffmann of Strasbourg University and Bruce A. Beutler of the Scripps Research Institute.

Breaking News Updates 10:35 a.m. and 11:20 a.m., 4:45 p.m.:

The New York Times is carrying an Associated Press report that Steinman died on September 30, of pancreatic cancer, possibly throwing the award of the Nobel Prize into doubt, as the Nobel Foundation rules prohibit posthumous awards; an update by Times science reporters, with an explanation of the scientific discoveries, appears here. Rockefeller University's announcement of the award and of Steinman's passing is here. The Nobel announcement that Steinman would be honored posthumously, in light of the unique circumstances surrounding the awarding of the prize and subsequent disclosure of his death. 

According to the Nobel news release:

Ralph Steinman discovered, in 1973, a new cell type that he called the dendritic cell. He speculated that it could be important in the immune system and went on to test whether dendritic cells could activate T cells, a cell type that has a key role in adaptive immunity and develops an immunologic memory against many different substances. In cell culture experiments, he showed that the presence of dendritic cells resulted in vivid responses of T cells to such substances. These findings were initially met with skepticism but subsequent work by Steinman demonstrated that dendritic cells have a unique capacity to activate T cells.

Further studies by Steinman and other scientists went on to address the question of how the adaptive immune system decides whether or not it should be activated when encountering various substances. Signals arising from the innate immune response and sensed by dendritic cells were shown to control T cell activation. This makes it possible for the immune system to react towards pathogenic microorganisms while avoiding an attack on the body's own endogenous molecules.

According to the Rockefeller University description of Steinman's laboratory:

Dendritic cells, which were originally codiscovered by Dr. Steinman with Zanvil A. Cohn at Rockefeller, are pivotal to the adaptive and innate branches of the immune system. Dr. Steinman’s research focuses on the mechanisms employed by dendritic cells to regulate lymphocyte function in tolerance and immunity, as well as the use of dendritic cells to understand the development of immune-based diseases and the design of new therapies and vaccines.

The immune system contains a system of dendritic cells, which captures, processes and presents antigens and provides additional controls on the development of antigen-specific immunity and tolerance. Because of these functions, dendritic cells (DCs) are providing an important means to monitor and manipulate immune function in several disease states.

 

 

 

Related topics

You might also like

At Harvard, AI Meets “Post-Neoliberalism”

Experts debate whether markets alone should govern tech in the U.S.

Sam Liss to Head Harvard’s Office for Technology Development

Technology licensing and corporate partnerships are an important source of revenue for the University.

Garber to Serve as Harvard President Beyond 2027

A once-interim appointment will now continue indefinitely.

Most popular

Why Men Are Falling Behind in Education, Employment, and Health

Can new approaches to education address a growing gender gap?

Trump Administration Appeals Order Restoring $2.7 Billion in Funding to Harvard

The appeal, which had been expected, came two days before the deadline to file.

The 1884 Cannibalism-at-Sea Case That Still Has Harvard Talking

The Queen v. Dudley and Stephens changed the course of legal history. Here’s why it’s been fodder for countless classroom debates.

Explore More From Current Issue

A jubilant graduate shouts into a megaphone, surrounded by a cheering crowd.

For Campus Speech, Civility is a Cultural Practice

A former Harvard College dean reviews Princeton President Christopher Eisgruber’s book Terms of Respect.

A football player kicking a ball while another teammate holds it on the field.

A Near-Perfect Football Season Ends in Disappointment

A loss to Villanova derails Harvard in the playoffs. 

Evolutionary progression from primates to humans in a colorful illustration.

Why Humans Walk on Two Legs

Research highlights our evolutionary ancestors’ unique pelvis.