Lightweight, distortion-free flat lens uses antennae, not glass, to focus light

Harvard scientists have developed a tiny, lightweight, distortion-free lens that focuses light without glass.

This disortion-free flat lens, less than a millimeter across, uses antennae etched from a layer of gold, rather than glass, to focus laser light.
This high-resolution image shows the boundary line between two differently-shaped antennae patterns on the surface of the flat lens.

Scientists at Harvard’s School of Engineering and Applied Sciences have created a revolutionary flat lens made not of glass but of a layer of gold (seen here in a photograph taken through a conventional microscope). As thin as one-thousandth of a human hair, and just one millimeter in diameter, the lens focuses incoming light by relying on tiny antennae, rather than the phenomenon of refraction, as a glass lens does.

Designed in the laboratory of Federico Capasso, Wallace professor of applied physics and Hayes senior research fellow in electrical engineering, the innovation was recently described in Nano Letters. “The advantage of our lens,” says lead author Francesco Aieta, a visiting graduate student from the Università Politecnica delle Marche in Italy, “is that instead of being bulky and thick, [it] can be very thin.”

Light traveling between two points can potentially take any possible route. When it is traveling in a uniform medium, the route will be a straight line, but if a material such as glass is introduced, the light is slowed and as a consequence may prefer to bend, according to Fermat’s principle of least time: waves of light seeking the fastest overall route between two points may travel farther in a fast medium in order to find the shortest route through a slow one. For this reason, conventional lenses are shaped in a specific way so that all the rays of light, ideally, converge to the focal point. But spherical glass lenses don’t do this perfectly; light passing through the lens periphery has a slightly shorter focal length than light traveling through the center. Correcting for this using additional glass lenses works, but is complicated and makes such optical equipment even heavier.

In the flat lens, tiny gold antennae, etched using electron-beam lithography from a solid gold layer just 55 nanometers thick, delay light not as it propagates through a thick material, but right at the lens surface, introducing slightly different delays (phase lags) in each concentric ring. The antennae (see the inset scanning electron microscope photograph) are v-shaped: “Tweaking the length of the arms and the angle of the ‘v,’” Aieta explains, “allows us to obtain all the amplitudes and phases that we need.” Each concentric ring of the lens is patterned with differently configured antennae that introduce a delay of just the right amount so that some of the light can be focused on a single point. “By changing the distribution of the concentric rings,” he explains, “you can obtain a longer or shorter focal length.”

Although this distortion-free flat lens may one day replace all manner of glass optical systems—from camera lenses to optical data-storage systems—for now Capasso’s team has optimized it for near-infrared light of a single wavelength, a laser of the kind frequently used in telecommunications. It does not currently focus visible light (although that is theoretically possible), but visible light enables the lens’s concentric rings to be distinguished from one another: the differently shaped antennae in each ring scatter the light in a different way, creating the oranges and reds seen in the photograph.

Read more articles by Jonathan Shaw

You might also like

Harvard Professor Michael Sandel Wins Philosophy’s Berggruen Prize

The creator of the popular ‘Justice’ course receives a $1 million award.

Harvard Economist Wolfram Schlenker Is Tackling Climate Change

How extreme heat affects our land—and our food supply 

In Sermon, Garber Urges Harvard Community to ‘Defend and Protect’ Institutions

Harvard’s president uses traditional Memorial Church address to encourage divergent views.

Most popular

What Trump Means for John Roberts's Legacy

Executive power is on the docket at the Supreme Court.

Three Harvardians win MacArthur Fellowships

A mathematician, a political scientist, and an astrophysicist are honored with “genius” grants for their work.

Harvard’s Endowment, Donations Rise—but the University Runs a Deficit

The annual financial report signals severe challenges to come.

Explore More From Current Issue

Illustration of tiny doctors working inside a large nose against a turquoise background.

A Flu Vaccine That Actually Works

Next-gen vaccines delivered directly to the site of infection are far more effective than existing shots.

People gather near the John Harvard Statue in front of University Hall surrounded by autumn trees.

A Changed Harvard Faces the Future

After a tense summer—and with no Trump settlement in sight—the University continues to adapt.