Polony Power

"Polonies" are tiny colonies of DNA, about one micron in diameter, grown on a glass microscope slide (the word itself is a contraction of...

Return to main article:

"Polonies" are tiny colonies of DNA, about one micron in diameter, grown on a glass microscope slide (the word itself is a contraction of "polymerase colony"). To create them, researchers first pour a solution containing chopped-up DNA onto the slide. Adding an enzyme called polymerase causes each piece to copy itself repeatedly, creating millions of polonies, each dot containing only copies of the original piece of DNA. The polonies are then exposed to a series of chemically-labeled probes that light up when run through a scanning machine, identifying each nucleotide base in the strand of code, much as dusting with powder allows crime-scene investigators to bring up fingerprints on a surface.

Polonies exert an aesthetic appeal. Above, a portion of a single region of the DNA nucleotide "colonies" as they are processed.
Sequencing of "microbeads," much smaller than polonies. Below, sequences from a messenger RNA molecule.
Images courtesy of George Church and the Lipper Center for Computational Genetics

A laboratory scanner can read a slide with 10 million polonies in about 20 minutes, George Church explains, making this one of the fastest sequencing methods yet devised. The resulting batches of data, however, are as disorderly as a sheaf of pages ripped from a telephone book and tossed in the air. A computer program developed by the Church research-laboratory team puts all in order by checking each page against the genetic equivalent of an intact phone directory: a reference sequence such as the one produced by the Human Genome Project. By using the technique, Church envisions that once a new personal genome is assembled, it could be checked for variations that might cause problems for that individual, or pooled with other genomes for research purposes.           

Most popular

Harvard Football: Villanova 52, Harvard 7

The Crimson’s inaugural playoff appearance is nasty, brutish, and short.

Excerpt from “Exercised,” by Daniel E. Lieberman

A biological anthropologist explains why and how exercise works to combat senescence.

Why Do We Still Have the Electoral College?

Historian Alexander Keyssar on why the unpopular institution has prevailed 

Explore More From Current Issue

Aisha Muharrar with shoulder-length hair, wearing a green blazer and white shirt.

Parks and Rec Comedy Writer Aisha Muharrar Gets Serious about Grief

With Loved One, the Harvard grad and Lampoon veteran makes her debut as a novelist.

Two women in traditional Japanese clothing sitting on a wooden platform near a tranquil pond, surrounded by autumn foliage.

Japan As It Never Will Be Again

Harvard’s Stillman collection showcases glimpses of the Meiji era. 

Professor David Liu smiles while sitting at a desk with colorful lanterns and a figurine in the background.

This Harvard Scientist Is Changing the Future of Genetic Diseases

David Liu has pioneered breakthroughs in gene editing, creating new therapies that may lead to cures.