Harvard alumnus James E. Rothman shares Nobel Prize in medicine

Yale cell biologist, two others, are recognized for work on vesicles and cellular transport.

James E. Rothman, Ph. D. '76—now Wallace professor of biomedical sciences at Yale, chair of the medical school's department of cell biology, and founding director of Yale's nanobiology institute—has been awarded the 2013 Nobel Prize in Physiology or Medicine with Randy W. Schekman, of the University of California, Berkeley, and Thomas C. Südhof, of Stanford. The three scientists were recognized for "their discoveries of machinery regulating vesicle traffic, a major transport system in our cells."

According to Rothman's biography, he earned his Ph.D. degree in biological chemistry and was a student at Harvard Medical School from 1971 to 1973. From 1976 to 1978, he was a fellow in MIT's department of biology. From 1978 to 1988, he was a professor in the department of biochemistry at Stanford. He was Squibb professor of molecular biology at Princeton from 1988 to 1991 and then founded and chaired the department of cellular biochemistry and biophysics at Memorial Sloan-Kettering Cancer Center (1991-2004), where he served as vice-chairman of Sloan-Kettering. Before moving to Yale in 2008, Rothman was Wu professor of chemical biology and director of Columbia University’s Sulzberger Genome Center.

His biography cites discovery of 

key molecular machinery responsible for transfer of materials among compartments within cells, providing the conceptual framework for understanding such diverse and important processes as the release of insulin into the blood, communication between nerve cells in the brain, and the entry of viruses to infect cells. Numerous kinds of tiny membrane-enveloped vesicles ferry packets of enclosed cargo. Each type of vesicle must deliver its specialized cargo to the correct destination among the maze of distinct compartments that populate the cytoplasm of a complex animal cell. The delivery process, termed membrane fusion, is fundamental for physiology and medicine, as pathology in this process can cause metabolic, neuropsychiatric and other diseases. Rothman reconstituted vesicle budding and fusion in a cell-free system (1984) and discovered the complex of SNARE proteins (1993) which mediates membrane fusion and affords it specificity. He also uncovered the GTPase-switch mechanism which controls coated vesicle budding in the cell (1991).

You might also like

In Sermon, Garber Urges Harvard Community to ‘Defend and Protect’ Institutions

Harvard’s president uses traditional Memorial Church address to encourage divergent views.

A New Narrative of Civil Rights

Political philosopher Brandon Terry’s vision of racial progress

This Astronomer is Sounding a Warning on 'Space Junk'

As debris accumulates in low Earth orbit, the danger of destructive collisions continues to rise.

Most popular

How MAGA Went Mainstream at Harvard

Trump, TikTok, and the pandemic are reshaping Gen Z politics.

Free Speech, the Bomb—and Donald Trump

A Harvard cardiologist on the unlikely alliances that shaped a global movement to prevent nuclear war

Irna Phillips, soap opera’s single mother, by Lynn Liccardo

Brief life of soap opera’s single mother: 1901-1973

Explore More From Current Issue

Illustration of college students running under a large red "MAGA" hat while others look on with some skeptisim.

How MAGA Went Mainstream at Harvard

Trump, TikTok, and the pandemic are reshaping Gen Z politics.

Illustrated world map showing people connected across countries with icons for ideas, research, and communication.

Why Harvard Needs International Students

An ed school professor on why global challenges demand global experiences

Renaissance portrait of young man thought to be Christoper Marlowe with light beard, wearing ornate black coat with gold buttons and red patterns.

Shakespeare’s Greatest Rival

Without Christopher Marlowe, there might not have been a Bard.