Harvard alumnus James E. Rothman shares Nobel Prize in medicine

Yale cell biologist, two others, are recognized for work on vesicles and cellular transport.

James E. Rothman, Ph. D. '76—now Wallace professor of biomedical sciences at Yale, chair of the medical school's department of cell biology, and founding director of Yale's nanobiology institute—has been awarded the 2013 Nobel Prize in Physiology or Medicine with Randy W. Schekman, of the University of California, Berkeley, and Thomas C. Südhof, of Stanford. The three scientists were recognized for "their discoveries of machinery regulating vesicle traffic, a major transport system in our cells."

According to Rothman's biography, he earned his Ph.D. degree in biological chemistry and was a student at Harvard Medical School from 1971 to 1973. From 1976 to 1978, he was a fellow in MIT's department of biology. From 1978 to 1988, he was a professor in the department of biochemistry at Stanford. He was Squibb professor of molecular biology at Princeton from 1988 to 1991 and then founded and chaired the department of cellular biochemistry and biophysics at Memorial Sloan-Kettering Cancer Center (1991-2004), where he served as vice-chairman of Sloan-Kettering. Before moving to Yale in 2008, Rothman was Wu professor of chemical biology and director of Columbia University’s Sulzberger Genome Center.

His biography cites discovery of 

key molecular machinery responsible for transfer of materials among compartments within cells, providing the conceptual framework for understanding such diverse and important processes as the release of insulin into the blood, communication between nerve cells in the brain, and the entry of viruses to infect cells. Numerous kinds of tiny membrane-enveloped vesicles ferry packets of enclosed cargo. Each type of vesicle must deliver its specialized cargo to the correct destination among the maze of distinct compartments that populate the cytoplasm of a complex animal cell. The delivery process, termed membrane fusion, is fundamental for physiology and medicine, as pathology in this process can cause metabolic, neuropsychiatric and other diseases. Rothman reconstituted vesicle budding and fusion in a cell-free system (1984) and discovered the complex of SNARE proteins (1993) which mediates membrane fusion and affords it specificity. He also uncovered the GTPase-switch mechanism which controls coated vesicle budding in the cell (1991).

Related topics

You might also like

The Secrets Glaciers Tell

A Harvard class explores the glacial legacy of pollution emitted by the Roman Empire

From Jellyfish to Digital Hearts

How Harvard researchers are helping to build a virtual model of the human heart

Creepy Crawlies and Sticky Murder Weapons at Harvard

In the shadows of Singapore’s forests, an ancient predator lies in wait—the velvet worm.

Most popular

Harvard Students, Alumna Named Rhodes and Marshall Scholars

Nine Rhodes and five Marshall scholars will study in the U.K. in 2026.

Harvard Revamps Controversial Public Health School Center

The health and human rights center had drawn attention for its Palestine-related program.

Explore More From Current Issue

Skyline view of Harvard University with trees in autumn colors and a river under a cloudy sky.

Your Views on Conservatism on Campus, Doxxing, and More

Readers write in about international students at Harvard, the September-October cover, and changes at the Chan School of Public Health.

Wolfram Schlenker wearing a suit sitting outdoors, smiling, with trees and a building in the background.

Harvard Economist Wolfram Schlenker Is Tackling Climate Change

How extreme heat affects our land—and our food supply 

A person walks across a street lined with historic buildings and a clock tower in the background.

Harvard In the News

A legal victory against Trump, hazing in the Harvard-Radcliffe Orchestra, and kicking off a Crimson football season with style