Harvard alumnus James E. Rothman shares Nobel Prize in medicine

Yale cell biologist, two others, are recognized for work on vesicles and cellular transport.

James E. Rothman, Ph. D. '76—now Wallace professor of biomedical sciences at Yale, chair of the medical school's department of cell biology, and founding director of Yale's nanobiology institute—has been awarded the 2013 Nobel Prize in Physiology or Medicine with Randy W. Schekman, of the University of California, Berkeley, and Thomas C. Südhof, of Stanford. The three scientists were recognized for "their discoveries of machinery regulating vesicle traffic, a major transport system in our cells."

According to Rothman's biography, he earned his Ph.D. degree in biological chemistry and was a student at Harvard Medical School from 1971 to 1973. From 1976 to 1978, he was a fellow in MIT's department of biology. From 1978 to 1988, he was a professor in the department of biochemistry at Stanford. He was Squibb professor of molecular biology at Princeton from 1988 to 1991 and then founded and chaired the department of cellular biochemistry and biophysics at Memorial Sloan-Kettering Cancer Center (1991-2004), where he served as vice-chairman of Sloan-Kettering. Before moving to Yale in 2008, Rothman was Wu professor of chemical biology and director of Columbia University’s Sulzberger Genome Center.

His biography cites discovery of 

key molecular machinery responsible for transfer of materials among compartments within cells, providing the conceptual framework for understanding such diverse and important processes as the release of insulin into the blood, communication between nerve cells in the brain, and the entry of viruses to infect cells. Numerous kinds of tiny membrane-enveloped vesicles ferry packets of enclosed cargo. Each type of vesicle must deliver its specialized cargo to the correct destination among the maze of distinct compartments that populate the cytoplasm of a complex animal cell. The delivery process, termed membrane fusion, is fundamental for physiology and medicine, as pathology in this process can cause metabolic, neuropsychiatric and other diseases. Rothman reconstituted vesicle budding and fusion in a cell-free system (1984) and discovered the complex of SNARE proteins (1993) which mediates membrane fusion and affords it specificity. He also uncovered the GTPase-switch mechanism which controls coated vesicle budding in the cell (1991).

Related topics

You might also like

Five Questions with Andrew Knoll

A paleontologist on how to understand Earth’s biggest extinction event

Harvard Professor Michael Sandel Wins Philosophy’s Berggruen Prize

The creator of the popular ‘Justice’ course receives a $1 million award.

Harvard Economist Wolfram Schlenker Is Tackling Climate Change

How extreme heat affects our land—and our food supply 

Most popular

Three Harvardians win MacArthur Fellowships

A mathematician, a political scientist, and an astrophysicist are honored with “genius” grants for their work.

Harvard Faculty of Arts and Sciences Faces a $350 Million Deficit

At a faculty meeting, Dean Hopi Hoekstra advocates for long-term, structural solutions.

Harvard Institute of Politics Director Setti Warren Dies at 55

The former Newton mayor is remembered as “a visionary and tireless leader” by the University community. 

Explore More From Current Issue

Students in purple jackets seated on chairs, facing away in a grassy area.

A New Prescription for Youth Mental Health

Kenyan entrepreneur Tom Osborn ’20 reimagines care for a global crisis.

A woman (Julia Child) struggles to carry a tall stack of books while approaching a building.

Highlights from Harvard’s Past

The rise of Cambridge cyclists, a lettuce boycott, and Julia Child’s cookbooks

An illustrative portrait of Justice Roberts in a black robe, resting his chin on his hand.

What Trump Means for John Roberts’s Legacy

Executive power is on the docket at the Supreme Court.