In Adam Cohen's lab, neurons to light up as they fire

Harvard researchers create neurons that light up when they fire.

Genetic alterations allow researchers to observe the electrical firing of a neuron (pink) as a flash of light, detectable by specially modified optical microscopes.

Genetic alterations allow researchers to observe the electrical firing of a neuron (pink) as a flash of light, detectable by specially modified optical microscopes. | Image by Daniel Hochbaum and Adam Cohen

A new tool developed in the lab of Adam Cohen, Loeb associate professor of the natural sciences, may illuminate neuroscience research: it allows neurons to light up as they fire. “For decades, people have wanted a way to look at a neuron and tell what it’s doing,” Cohen says. But just as we can’t see electricity coursing through a telephone wire, there’s been no good way to watch electrical signals move across neurons.

Until now. Cohen’s team used a protein from a Dead Sea microorganism that normally absorbs sunlight and converts it into electricity. “A few years ago, I wondered if it was possible to run [similar proteins] in reverse,” he says, “so instead of taking in light and generating electricity, we could use it to sense electrical energy in a cell and convert that into a detectable optical signal.” MIT researcher Ed Boyden recently conducted research that involved placing the gene that expresses this protein in an animal neuron, and he shared the gene with Cohen.

Cohen’s team genetically modified a virus to carry the gene, and then used the virus to infect rat neurons. Once inside a neuron, the gene prompts production of these proteins, which settle in the cell membrane. There they act like microscopic voltmeters, monitoring voltage changes. When a neuron is at rest, the inside of the cell is electrically negative compared to the outside, keeping the protein “dark.” But when a neuron fires, it causes a brief voltage spike that reverses the charge, prompting the protein to light up.

Although Cohen has already shared them with more than 60 labs, these voltage-indicator proteins aren’t ready for wide use yet, he says. The flashes are infrared and invisible to the naked eye, so Cohen’s team has had to develop specialized optical equipment to see them, and it will take other labs some time to set up similar equipment. “The neuroscientist’s dream,” he explains, “is to look into a brain and see all the neurons firing,” which would allow researchers to watch how signals spread, and even to see whether the speed at which they move is modulated by learning. “But we need to make our indicator brighter for that to work.”

Cohen believes the proteins have a range of additional applications as well. They could help test new drugs, for example: his team has added the voltage indicators to cardiac cells, which would allow them to study the effect of new medications on signaling in the heart. The fact that scientists would see the results through a microscope, he says, could dramatically increase the speed of drug testing.

Adam Cohen e-mail address:

cohen@chemistry.harvard.edu

 

Adam Cohen website:

www2.lsdiv.harvard.edu/labs/cohen

Read more articles by Erin O’Donnell
Related topics

You might also like

Five Questions with Andrew Knoll

A paleontologist on how to understand Earth’s biggest extinction event

Harvard Professor Michael Sandel Wins Philosophy’s Berggruen Prize

The creator of the popular ‘Justice’ course receives a $1 million award.

Harvard Economist Wolfram Schlenker Is Tackling Climate Change

How extreme heat affects our land—and our food supply 

Most popular

Harvard Faculty of Arts and Sciences Faces a $350 Million Deficit

At a faculty meeting, Dean Hopi Hoekstra advocates for long-term, structural solutions.

Harvard Institute of Politics Director Setti Warren Dies at 55

The former Newton mayor is remembered as “a visionary and tireless leader” by the University community. 

Reese Witherspoon Visits Harvard—and Talks Women, Media, and AI

Reese Witherspoon discusses female-driven content at Harvard Business School. 

Explore More From Current Issue

Two women in traditional Japanese clothing sitting on a wooden platform near a tranquil pond, surrounded by autumn foliage.

Japan As It Never Will Be Again

Harvard’s Stillman collection showcases glimpses of the Meiji era. 

Three book covers displayed on a light background, featuring titles and authors.

Must-Read Harvard Books Winter 2025

From aphorisms to art heists to democracy’s necessary conditions