Harvard SEAS study predicts western wildfires will worsen with climate change

By 2050 wildfires will last longer, generate more smoke, and burn a wider area in the western states.

By 2050 wildfires will last longer, generate more smoke, and burn a wider area in the western states.

Lightning, topography, and human-related activities start a large number of wildfires every year, but during the next 40 years it is climate change that will lead to a major increase in such blazes in the American West, according to a new Harvard School of Engineering and Applied Sciences (SEAS) study. The study will appear in the October 2013 issue of Atmospheric Environment.

“It turns out that, for the western United States, the biggest driver for fires in the future is temperature, and that result appears robust across models," says Loretta J. Mickley, a senior research fellow in atmospheric chemistry at SEAS and coauthor of the study. “When you get a large temperature increase over time, as we are seeing, and little change in rainfall, fires will increase in size.”

Although wildfires are triggered primarily by human activity and lightning, they grow and spread according to a completely different range of influences that are heavily dependent on the weather, says study lead author Xu Yue.  By examining records of past weather conditions and wildfires, the Harvard team found that the factors which influence the spread of fires vary from region to region, ranging from the amount of moisture in the forest floor to the relative humidity of the previous year, which promotes the woody understory shrub growth that fuels major wildfires.

The team then created mathematical models that closely link these types of variables with the observed wildfire outcomes for six “ecoregions” in the West, before replacing the historical observations with data based on the conclusions of the fourth Intergovernmental Panel on Climate Change (IPCC). By running the IPCC's climate data for the year 2050 through their own fire-prediction models, the Harvard team was able to calculate the area burned for each ecoregion at mid century.

“I think what people need to realize is that, embedded in those curves showing the tiny temperature increases year after year, are more extreme events that can be quite serious,” Mickley says. “It doesn't bode well.”

 

Related topics

You might also like

Five Questions with Michèle Duguay

A Harvard scholar of music theory on how streaming services have changed the experience of music

Harvard Faculty Discuss Tenure Denials

New data show a shift in when, in the process, rejections occur

Five Questions with Andrew Knoll

A paleontologist on how to understand Earth’s biggest extinction event

Most popular

Trump Administration Appeals Order Restoring $2.7 Billion in Funding to Harvard

The appeal, which had been expected, came two days before the deadline to file.

Why Men Are Falling Behind in Education, Employment, and Health

Can new approaches to education address a growing gender gap?

The 1884 Cannibalism-at-Sea Case That Still Has Harvard Talking

The Queen v. Dudley and Stephens changed the course of legal history. Here’s why it’s been fodder for countless classroom debates.

Explore More From Current Issue

Historic church steeple framed by bare tree branches against a clear sky.

Harvard’s Financial Challenges Lead to Difficult Choices

The University faces the consequences of the Trump administration—and its own bureaucracy

Four men in a small boat struggle with rough water, one lying down and others watching.

The 1884 Cannibalism-at-Sea Case That Still Has Harvard Talking

The Queen v. Dudley and Stephens changed the course of legal history. Here’s why it’s been fodder for countless classroom debates.

A man skiing intensely in the snow, with two spectators in the background.

Introductions: Dan Cnossen

A conversation with the former Navy SEAL and gold-medal-winning Paralympic skier