Why systems biology?

Studies of the dynamic molecular interactions in metabolism point to a central role for mitochondria.

Return to main article:

Systems biology shares with physiology, a much older discipline, the desire to study how whole biological systems work and are integrated. In the 1930s, Harvard Medical School (HMS) professor of physiology Walter Cannon coined the term “homeostasis” to describe how the brain and various parts of the body talk to each other to maintain a stable internal equilibrium. “The limitation of that approach in the modern age,” explains Marc Kirschner, “is that most of the action is taking place at the molecular level.”

Kirschner, who founded the HMS department of systems biology in 2003 and chaired it until this spring, explains that, “whether in genetics, where mutated genes are expressed as proteins, or in pharmacology, where drugs (small molecules) interact with those proteins, the key interactions are at the microscale. Geneticists, cell biologists, and biochemists all work at this scale, but systems biology” is different because, like physiology, the field “aims to understand the dynamic interactions among components at that molecular level.”

Kirschner hired Mootha as the first faculty member for the new department in 2004. “What made Vamsi attractive,” he says, is that his field of study, metabolism, “is an integrated problem. It is not just figuring out what the pathways are, but how metabolism works to meet the constantly changing needs of the organism.” Mootha also brought an interdisciplinary approach to his focus on mitochondria, these machine-like systems that “influence, and are in turn influenced by, virtually every other part of the cell.”

Kirschner recalls that Mootha first used his background in mathematics to tease out the fingerprints of genetic changes that were important in diabetes. At the time, other researchers were finding genetic associations to diabetes that were not statistically reliable, he continues. Mootha “very cleverly grouped the changes in terms of systems. That increased their statistical significance, because he was looking at lots of associations, not just one thing at a time.” Mootha thus demonstrated the important role of mitochondria and oxidative metabolism in diabetes, and that “had a big impact,” Kirschner adds. Again and again, Mootha has used a blended approach to systems biology, combining the tools of genomics (he maintains an affiliation with the Broad Institute, where he co-directs the Metabolism Program) with direct measurements of variables such as oxygen uptake or calcium flux—the microphysiology that characterizes a greater proportion of the systems biology research taking place at HMS. Says Kirschner, “Vamsi is an absolute master at matching the approach to the system, and his work developing hypoxia as a treatment for mitochondrial disease is a beautiful example of using genomic tools to get at a physiological problem, with direct medical application.”

Read more articles by Jonathan Shaw
Related topics

You might also like

Five Questions with Andrew Knoll

A paleontologist on how to understand earth’s biggest extinction event

Harvard Professor Michael Sandel Wins Philosophy’s Berggruen Prize

The creator of the popular ‘Justice’ course receives a $1 million award.

Harvard Economist Wolfram Schlenker Is Tackling Climate Change

How extreme heat affects our land—and our food supply 

Most popular

What Trump Means for John Roberts’s Legacy

Executive power is on the docket at the Supreme Court.

Harvard’s Class of 2029 Reflects Shifts in Racial Makeup After Affirmative Action Ends

International students continue to enroll amid political uncertainty; mandatory SATs lead to a drop in applications.

Harvard’s Endowment, Donations Rise—but the University Runs a Deficit

The annual financial report signals severe challenges to come.

Explore More From Current Issue

A person walks across a street lined with historic buildings and a clock tower in the background.

Harvard In the News

A legal victory against Trump, hazing in the Harvard-Radcliffe Orchestra, and kicking off a Crimson football season with style

Students in purple jackets seated on chairs, facing away in a grassy area.

A New Prescription for Youth Mental Health

Kenyan entrepreneur Tom Osborn ’20 reimagines care for a global crisis.

People gather near the John Harvard Statue in front of University Hall surrounded by autumn trees.

A Changed Harvard Faces the Future

After a tense summer—and with no Trump settlement in sight—the University continues to adapt.