Spyros Artavanis-Tsakonas has built the largest protein interaction map to date

A map of protein interactions in fruit flies provides new ways to study disease.

A large-scale map of protein interactions in fruit flies provides new ways to study disease.

Just about everything the body does depends on the interactions of proteins—the molecules encoded by genes that serve as the primary workers in cells. Without thousands of coordinating proteins, cells wouldn’t function properly; even subtle problems in these interactions can lead to disease.

Spyros Artavanis-Tsakonas, professor of cell biology at Harvard Medical School (HMS), believes that to better grasp what can go wrong with proteins, scientists need to understand how these molecules function together (not just in isolation) in healthy cells. In the October 28 issue of Cell, his team published a large-scale map that tracks the interactions of thousands of proteins in fruit flies (Drosophila melanogaster). Since then, the researchers have continued to expand the map and delve into these connections in more detail.

The map was created through a painstaking process that Artavanis-Tsakonas compares to fishing. The scientists first randomly generated thousands of distinct proteins to serve as “bait,” and introduced these proteins into Drosophila cells. When they removed the baits, they could see which proteins had adhered to them, thanks to the application of a highly precise technique, mass spectrometry, carried out by HMS professor of cell biology Steven Gygi. The result: a vast “social network” of proteins.

Although tiny fruit flies may seem to have little relevance to human disease, Artavanis-Tsakonas points out that “a lot of the basic biology is the same both in flies and humans,” and flies are far easier to manipulate and study. With the new map in hand, his lab and other researchers can study how different conditions, diseases, or other perturbations change the protein landscape. They can better investigate the thousands of proteins with as yet unknown functions by tracking their associations with known proteins. And the map may also help identify new drugs; if a protein implicated in a disease is difficult to modify with a drug, the map will allow researchers to identify alternative targets for a similar drug in a protein’s network. Although scientists have been working on similar maps, this is the largest of its kind for a complex organism. “We had enormous feedback” from other researchers about the map, Artavanis-Tsakonas says, and the data have been added to a public database for others to use. 

Watch Spyros Artavanis-Tsakonas discuss how he and colleagues built a map that shows how thousands of proteins in a fruit-fly cell communicate with each other.

Read more articles by Courtney Humphries

You might also like

In Sermon, Garber Urges Harvard Community to ‘Defend and Protect’ Institutions

Harvard’s president uses traditional Memorial Church address to encourage divergent views.

How Do Single-Celled Organisms Learn and Remember

A Harvard neuroscientist’s quest to model memory in single-celled organisms

This Astronomer is Sounding a Warning on 'Space Junk'

As debris accumulates in low Earth orbit, the danger of destructive collisions continues to rise.

Most popular

Two Years of Doxxing at Harvard

What happens when students are publicly named and shamed for their views?

A New Narrative of Civil Rights

Political philosopher Brandon Terry’s vision of racial progress

Do Mitochondria Hold the Power to Heal?

From Alzheimer’s to cancer, this tiny organelle might expand treatment options. 

Explore More From Current Issue

Room filled with furniture made from tightly rolled newspaper sheets.

A Paper House in Massachusetts

The 1920s Rockport cottage reflects resourceful ingenuity.

Johnston Gate

Your Views on Harvard’s Standoff, Antisemitism, and More

Readers comment on the controversial July-August cover, authoritarianism, and scientific research.

Two women in traditional kimonos, one lighting a cigarette, in a scene from Apart from You.

Harvard Film Archive Spotlights Japanese Director Mikio Naruse

A retrospective of the filmmaker’s works, from Floating Clouds to Flowing