Orchid bees and flight turbulence

Orchid bees in flight extend their hind legs for stability.

Orchid bees navigate turbulence by extending their massive hind legs to prevent rolling.

[extra:Extra]

Watch videos of orchid bees in flight.

Waft the scent of cinnamon, wintergreen, or eucalyptus into the tropical air of Central and South America and beautifully colored bees in hues of red, gold, green, and blue will appear as if out of nowhere, says Stacey Combes, assistant professor of organismic and evolutionary biology. These male orchid bees will travel almost anywhere in pursuit of exotic fragrances—aromatic hydrocarbons that they collect over a lifetime and store in pockets in their massive hind legs. (Like all males in the order Hymenoptera, they have no stingers.)

So powerful a motivator is the orchid bee’s fixation on fragrance (the scents are thought to be used in sexual selection) that it can be used to measure their flying abilities, Combes says. She places a scent in a receptable in front of a fan, and the bees lock on to it. “I can turn the speed up faster and faster, like a treadmill,” she says, “and they keep flying.” She had suspected that once the bees reached maximum flight speed, they wouldn’t be able to keep up anymore, but it was instability they had trouble with. As the speeds increased, the bees started rolling over and were ejected out of the airstream. To prove that turbulence, rather than speed, caused the problem, Combes used a grid with squares to disrupt the airflow and a 3-D sonic anemometer to map the resulting turbulence in the air stream. The higher the turbulence, the lower the bees’ maximum speed before failure.

Combes also observed a counterintuitive behavior: as the speeds increased beyond two meters per second, the bees straightened their hind legs—which increased drag as much as 30 percent. By moving the mass in their legs away from their bodies, Combes explains, the bees increase their moment of inertia, or resistance to rotation, in the same way figure skaters will emerge from a blurringly fast spin by extending their arms. Flying with straight legs requires more energy, but helps the bees stabilize themselves in the turbulent conditions they may encounter in the upper levels of the rainforest, where the orchids they frequent are most abundant.

“Wind is a universal part of life for all flying animals,” says Combes, who is part of a research team working on the development of small-scale mobile robotic devices (see "Tinker, Tailor, Robot, Fly[extra],"January-February 2008, page 8.)  “Yet we know remarkably little about how animals navigate windy conditions and unpredictable airflows, since most studies of animal flight have taken place in simplified environments, such as in still air or perfect laminar flows. Our work shows clearly that the effect of environmental turbulence on flight stability is an important and previously unrecognized determinant of flight performance.”

Read more articles by Jonathan Shaw
Related topics

You might also like

U.S. Appeals Court Preserves NIH Research Funding

The court made permanent an injunction preventing caps on reimbursement for overhead costs.

Eating for the Holidays, the Planet, and Your Heart

“Sustainable eating,” and healthy recipes you can prepare for the holidays.

Getting to Mars (for Real)

Humans have been dreaming of living on the Red Planet for decades. Harvard researchers are on the case.

Most popular

Why Men Are Falling Behind in Education, Employment, and Health

Can new approaches to education address a growing gender gap?

Sign of the Times: Harvard Quarterback Jaden Craig Will Play for TCU

Out of eligibility for the Crimson, the star entered the transfer portal.  

Explore More From Current Issue

Black and white photo of a large mushroom cloud rising above the horizon.

Open Book: A New Nuclear Age

Harvard historian Serhii Plokhy’s latest book looks at the rising danger of a new arms race.

An image depicting high carb ultra processed foods, those which are often associated with health risks

Is Ultraprocessed Food Really That Bad?

A Harvard professor challenges conventional wisdom. 

A stylized illustration of red coral branching from a gray base, resembling a fantastical entity.

This TikTok Artist Combines Monsters and Mental Heath

Ava Jinying Salzman’s artwork helps people process difficult feelings.