Orchid Bees and Flight Turbulence

Orchid bees in flight extend their hind legs for stability.

Orchid bees navigate turbulence by extending their massive hind legs to prevent rolling.

[extra:Extra]

Watch videos of orchid bees in flight.

Waft the scent of cinnamon, wintergreen, or eucalyptus into the tropical air of Central and South America and beautifully colored bees in hues of red, gold, green, and blue will appear as if out of nowhere, says Stacey Combes, assistant professor of organismic and evolutionary biology. These male orchid bees will travel almost anywhere in pursuit of exotic fragrances—aromatic hydrocarbons that they collect over a lifetime and store in pockets in their massive hind legs. (Like all males in the order Hymenoptera, they have no stingers.)

So powerful a motivator is the orchid bee’s fixation on fragrance (the scents are thought to be used in sexual selection) that it can be used to measure their flying abilities, Combes says. She places a scent in a receptable in front of a fan, and the bees lock on to it. “I can turn the speed up faster and faster, like a treadmill,” she says, “and they keep flying.” She had suspected that once the bees reached maximum flight speed, they wouldn’t be able to keep up anymore, but it was instability they had trouble with. As the speeds increased, the bees started rolling over and were ejected out of the airstream. To prove that turbulence, rather than speed, caused the problem, Combes used a grid with squares to disrupt the airflow and a 3-D sonic anemometer to map the resulting turbulence in the air stream. The higher the turbulence, the lower the bees’ maximum speed before failure.

Combes also observed a counterintuitive behavior: as the speeds increased beyond two meters per second, the bees straightened their hind legs—which increased drag as much as 30 percent. By moving the mass in their legs away from their bodies, Combes explains, the bees increase their moment of inertia, or resistance to rotation, in the same way figure skaters will emerge from a blurringly fast spin by extending their arms. Flying with straight legs requires more energy, but helps the bees stabilize themselves in the turbulent conditions they may encounter in the upper levels of the rainforest, where the orchids they frequent are most abundant.

“Wind is a universal part of life for all flying animals,” says Combes, who is part of a research team working on the development of small-scale mobile robotic devices (see "Tinker, Tailor, Robot, Fly[extra],"January-February 2008, page 8.)  “Yet we know remarkably little about how animals navigate windy conditions and unpredictable airflows, since most studies of animal flight have taken place in simplified environments, such as in still air or perfect laminar flows. Our work shows clearly that the effect of environmental turbulence on flight stability is an important and previously unrecognized determinant of flight performance.”

Read more articles by Jonathan Shaw
Related topics

You might also like

Rachel Ruysch’s Lush (Still) Life

Now on display at the Museum of Fine Arts, a Dutch painter’s art proved a treasure trove for scientists.

What Happens When Infections Stop Responding to Antibiotics?

Harvard Medical School experts discuss the growing threat of antimicrobial resistance.

Green AI: Hype or Hope?

An expert panel explores AI’s climate impact, from emissions to water use.

Most popular

What Trump Means for John Roberts’s Legacy

Executive power is on the docket at the Supreme Court.

This Harvard Scientist Is Changing the Future of Genetic Diseases

David Liu has pioneered breakthroughs in gene editing, creating new therapies that may lead to cures.

Three Harvardians Win Macarthur Fellowships

A mathematician, a political scientist, and an astrophysicist are honored with “genius” grants for their work.

Explore More From Current Issue

Man splashing water on his face at outdoor fountain beside woman holding cup near stone building.

Why Heat Waves Make You Miserable

Scientists are studying how much heat and humidity the human body can take.

James Muller in white lab coat leaning on railing in hospital hallway.

Free Speech, the Bomb-and Donald Trump

A Harvard cardiologist on the unlikely alliances that shaped a global movement to prevent nuclear war

Catherine Zipf smiling, wearing striped shirt and dark sweater outdoors.

Preserving the History of Jim Crow Era Safe Havens

Architectural historian Catherine Zipf is building a database of Green Book sites.