George Whitesides lab snuffs small flames with electricity

Harvard scientists have discovered how to extinguish flames by pushing them off their fuel source with an electric field.

George Whitesides and colleagues have discovered that they can extinguish a flame by pushing it off its fuel source, using an electric field that emanates from the tip of a wire.

Three years ago, the Defense Advanced Research Projects Agency (DARPA) laid down a challenge to scientists: find a way to use electric fields or sonic waves to suppress fire instantly. “Fire, especially in enclosed military environments such as ship holds, aircraft cockpits, and ground vehicles, continues to be a major cause of material destruction and loss of warfighter life,” noted the agency in its announcement. This spring, scientists in the lab of Flowers University Professor George Whitesides succeeded in extinguishing a flame a foot and a half high with a strong electric field.

A flame, explains Ludovico Cardemartiri, the postdoctoral fellow who ran the experiments, is really a chemical reaction in which part of the combustible fuel source is being ionized—separated into positively and negatively charged particles that form a gas cloud of charged particles called a plasma. That much has been known for a long time, and scientists have even used static electric fields to “bend” flames.

The Whitesides team found that by using an oscillating electric field (of the kind generated by alternating current), rather than a static field, the flame could actually be snuffed out. Because a flame is a complex system, composed of myriad dynamic parts, Cardemartiri explains, scientists still don’t have a complete quantitative understanding of this process. But they think that the soot in the flame might play an important role, by concentrating the positively charged ions in the plasma; when a high-voltage electric field emanating from the tip of a wire is pointed at the flame, it exerts a repelling force on the charged particles, which drag the plasma with it. Pushed off its fuel source, the flame dies.

Whether this discovery will yield fire-suppression technologies of the kind that DARPA hopes for remains to be seen. Nevertheless, Cardemartiri points out that this kind of basic research, which has yielded new insight into how electrical waves can control flames, could have an impact on other important applications of combustion—perhaps even in cars or power plants.

Read more articles by Jonathan Shaw
Related topics

You might also like

Five Questions with Michèle Duguay

A Harvard scholar of music theory on how streaming services have changed the experience of music

Harvard Faculty Discuss Tenure Denials

New data show a shift in when, in the process, rejections occur

Five Questions with Andrew Knoll

A paleontologist on how to understand Earth’s biggest extinction event

Most popular

Why Men Are Falling Behind in Education, Employment, and Health

Can new approaches to education address a growing gender gap?

The 1884 Cannibalism-at-Sea Case That Still Has Harvard Talking

The Queen v. Dudley and Stephens changed the course of legal history. Here’s why it’s been fodder for countless classroom debates.

Trump Administration Appeals Order Restoring $2.7 Billion in Funding to Harvard

The appeal, which had been expected, came two days before the deadline to file.

Explore More From Current Issue

A man skiing intensely in the snow, with two spectators in the background.

Introductions: Dan Cnossen

A conversation with the former Navy SEAL and gold-medal-winning Paralympic skier

Historic church steeple framed by bare tree branches against a clear sky.

Harvard’s Financial Challenges Lead to Difficult Choices

The University faces the consequences of the Trump administration—and its own bureaucracy

Evolutionary progression from primates to humans in a colorful illustration.

Why Humans Walk on Two Legs

Research highlights our evolutionary ancestors’ unique pelvis.