Kit Parker uncovers mechanics of traumatic brain injury

Bioengineering professor’s discovery offers new hope for injured soldiers.

Kevin Kit Parker, the Thomas D. Cabot Associate Professor of Applied Science and Associate Professor of Biomedical Engineering, is researching traumatic brain injury (primarily from his experience in the military)

Cabot associate professor in applied science Kevin "Kit" Parker and a team of fellow Harvard bioengineers have announced the discovery of precisely how traumatic head injuries damage brain cells, a discovery that offers new hope for soldiers in Iraq and Afghanistan wounded by improvised explosive devices (IEDs). Such injuries can result in death or temporary concussions that can produce dangerous hemorrhages or long-term injuries that can lead to early onset of Alzheimer’s disease or Parkinson’s.

“Imagine this blast wave is propagating through the head—like you’re thumping your Jell-O when you’re a kid,” Parker told the Boston Globe. “When it gets to these cells, the cells are stretched and compressed.”

Parker and his team found that when the brain is subjected to a loud, explosive force, fragile tissue slams against the skull, resulting in a surge in blood pressure that stretches blood-vessel walls beyond their normal limit.  Published in a pair of recent scientific journals, Proceedings of the National Academy of Sciences (PNAS) and PLoS One, the findings offer the most detailed explanation to date of how a bomb blast damages the brain, ScienceNOW, the online presence of Science, explains. The researchers also discovered that those suffering from brain injuries might be helped by a particular protein inhibitor that plays a role in preventing brain cells from attaching to surrounding tissue in harmful ways.

Parker, whose bioengineering breakthroughs in cardiology were profiled in Harvard Magazine in 2009, shifted his focus to brain research after two tours in Afghanistan as a U.S. Army infantry officer. “I kept seeing buddies of mine get hit and thought, ‘All right, I’ll take a look at this and see if I can get an angle on it,’” Parker told ScienceNOW. To conduct their tests, the researchers built a neural network of engineered human blood vessels and rat neurons. They then subjected the network to forces that mimicked blast waves moving through brain tissue, the first step toward a “Traumatic Brain Injury on a chip” that could be used to screen for drugs to treat blast-injured soldiers before long-term damage sets in, reports MIT’s Technology Review

 

You might also like

Five Questions with Javier Ortega-Hernández

A professor of evolutionary biology on what shaped life more than 500 million years ago

Five Questions with Peter R. Girguis

A Harvard professor of evolutionary biology on what lurks in the deep sea  

How AI Is Reshaping Supply Chains

Harvard Kennedy School lecturer on using AI to strengthen supply chains

Most popular

The Trump Administration's Impact on Higher Education

Unprecedented federal actions against research funding, diversity, speech, and more

How MAGA Went Mainstream at Harvard

Trump, TikTok, and the pandemic are reshaping Gen Z politics.

Harvard art historian Jennifer Roberts teaches the value of immersive attention

Teaching students the value of deceleration and immersive attention

Explore More From Current Issue

Man in gray sweater standing in hallway with colorful abstract art on wall.

How Do Single-Celled Organisms Learn and Remember

A Harvard neuroscientist’s quest to model memory in single-celled organisms

Brandon Terry, wearing a blue suit, standing before The Embrace, a large bronze sculpture of intertwined arms in Boston Common.

A New Narrative of Civil Rights

Political philosopher Brandon Terry’s vision of racial progress

James Muller in white lab coat leaning on railing in hospital hallway.

Free Speech, the Bomb—and Donald Trump

A Harvard cardiologist on the unlikely alliances that shaped a global movement to prevent nuclear war