Printing Wires In Three Dimensions

A new kind of 3-D printer forms wires in midair.

A 3-D printer “draws” a coiled antenna in the air. What allows the printer to work this way is a laser that hardens an “ink” of silver nanoparticles as they emerge from the nozzle.

A 3-D printer “draws” a coiled antenna in the air. What allows the printer to work this way is a laser that hardens an “ink” of silver nanoparticles as they emerge from the nozzle.

Image courtesy of Mark Skylar-Scott

In action, what looks like a sharp glowing pen squeezes out a coil of silver, starting from a base and curling upward into the air. It’s actually a nozzle attached to a 3-D printer, and the coil of silver, made of an ink composed of nanoparticles, is thinner than a strand of hair. A few twisting motions, and the microscopic wire emerges from the nozzle to form sharp angles, a spherical antenna, a butterfly with open wings.

These complex shapes, and their ability to hold up as freestanding structures, represent a big step forward in 3-D metal printing, which in the past has produced curvilinear structures by printing them flat on a supportive base (also called a substrate) and later heating them to solidify the material. That two-step process limited the structures’ complexity. Now a technique pioneered by Harvard researchers at the Wyss Institute for Biologically Inspired Engineering and the Paulson School of Engineering and Applied Sciences opens new possibilities: printed metal will be able to assume more—and more complicated—shapes, for applications ranging from 3-D antennas to electrical interconnects.

The breakthrough innovation is a laser positioned right beside the 3-D printer nozzle, says Mark Skylar-Scott, a Wyss Institute postdoctoral fellow in materials science and electrical engineering and lead author of a May 31 Proceedings of the National Academy of Sciences paper on the research. As the ink—actually silver nanoparticles suspended in a polymer solution—flows out of the nozzle, the metallic wire has the consistency of toothpaste: not liquid, but also not rigid enough to form freely supported, complex 3-D structures.

The laser heats the ink as it emerges from the nozzle, annealing it; the nanoparticles fuse together and the polymer decomposes so that the printed filament becomes a solid yet flexible metal wire able to support its own weight as the printhead, moving in x, y, and z axes, forms it into a number of shapes, including helical springs and those curved butterfly wings.

During the fusing process, the metal achieves an electrical conductivity that nearly matches that of bulk silver. And the laser’s precision and the ability to adjust its temperature “on the fly,” Skylar-Scott says, enables researchers to vary the level of conductivity within a single structure and to heat only the wire, without risking damage to the substrate, which could be made of plastic, rubber, or flexible materials.

Working as he does in the research lab of Wyss professor of biologically inspired engineering Jennifer Lewis, who is his coauthor on the paper, Skylar-Scott sees many potential uses for these complex metal structures: in biomedical devices, wearable and flexible electronics, sensors, displays, small antennae, electromagnetic devices, a coil in a speaker, a transformer to amplify signals. But first, he says, someone will have to further refine the technique. “Right now there are a lot of knobs to tweak,” he says, including the position of the laser, its pulse frequency and direction, and the print speed. “With a bit more work,” adds Lewis, “these parameters can be optimized and automated.”

Read more articles by Lydialyle Gibson
Related topics

You might also like

In Sermon, Garber Urges Harvard Community to ‘Defend and Protect’ Institutions

Harvard’s president uses traditional Memorial Church address to encourage divergent views.

A New Narrative of Civil Rights

Political philosopher Brandon Terry’s vision of racial progress

This Astronomer Is Sounding a Warning On 'Space Junk'

As debris accumulates in low Earth orbit, the danger of destructive collisions continues to rise.

Most popular

What Trump Means for John Roberts’s Legacy

Executive power is on the docket at the Supreme Court.

This Harvard Scientist Is Changing the Future of Genetic Diseases

David Liu has pioneered breakthroughs in gene editing, creating new therapies that may lead to cures.

Harvard Layoffs Continue, with More to Come

In the wake of federal government actions, several Harvard schools and institutes are cutting costs.

Explore More From Current Issue

Whimsical illustration of students rushing through ornate campus gate from bus marked “Welcome New Students.”

Highlights from Harvard’s Past

The Medical School goes coed, University poet wins Nobel Prize. 

Book cover of "Black Moses" by Caleb Gayle with subtitle about ambition and the fight for a Black state.

Civil Rights In the American West

A new book chronicles one man’s quest for a Black state.

Vivian W. Rong sitting on bench outdoors.

Highlighting Harvard Magazine’s Fellows

The 2025-2026 Ledecky and Summer Undergraduate Fellows