B vitamin content of rice declines with rising CO2

A new study quantifies the global impact of declines in a single nutrient in a single crop, and hints at wider impacts.

Photograph by Barcin/iStock

Rising levels of atmospheric COdon’t just warm the planet, they lower the levels of beneficial vitamins and other nutrients in grains and edible plants. New research has shown that rice grown at carbon dioxide levels that could be reached as soon as 2050 are expected to suffer a one-sixth to nearly one-third loss of their B vitamin content. A study conducted at the Harvard T.H. Chan School of Public Health (HSPH) now quantifies the health impact of that change.

Globally, rice is humanity’s most important staple food, and for half a billion people, the crop provides more than 50 percent of their daily calories. That poses a serious potential problem: a prior study published by principal research scientist Samuel Myers and colleagues at HSPH found that when atmospheric COreaches 550 parts per million (up from its current 410+ ppm), the reduced protein content of the rice will lead to protein deficiency in an additional 148 million people.That work also documented declines in the iron and zinc content of rice, wheat, barley, legumes, maize and potatoes—all of them important staple foods.

The latest study, published in GeoHealth, focuses on the impact of rising COon the B vitamins folate, riboflavin, and thiamin. Maternal deficiencies in folate can lead to neural-tube defects in unborn children, as well as weakness and loss of appetite in adults; thiamin deficiency causes beriberi; and low levels of riboflavin can cause skin lesions and nervous disorders, including migraines. Using a framework that allows them to estimate the impact of these changes on the global burden of disease, the researchers estimate that an additional 132 million people would suffer folate deficiency based on their consumption of rice alone, 67 million additional people will become deficient in thiamin, and 40 million more people will become deficient in riboflavin.

Those numbers almost certainly understate the impact. As Myers and his coauthor, HSPH research associate Matthew R. Smith, write: “Because elevated COconcentrations are likely to reduce B vitamins in other crops beyond rice, our findings likely represent an underestimate of the impact of anthropogenic COemissions on sufficiency of B vitamin intake.” And their new study does not attempt to quantify the global burden of disease that may be triggered by deficiencies in other nutrients that decline with rising CO2. As they put it, “CO2-induced nutritional declines could produce a major headwind on progress toward alleviating malnutrition, and deserves attention and concerted action.”

Read more articles by Jonathan Shaw

You might also like

Eating for the Holidays, the Planet, and Your Heart

“Sustainable eating,” and healthy recipes you can prepare for the holidays.

Five Questions with Michèle Duguay

A Harvard scholar of music theory on how streaming services have changed the experience of music

Harvard Faculty Discuss Tenure Denials

New data show a shift in when, in the process, rejections occur

Most popular

Harvard’s Epstein Probe Widened

The University investigates ties to donors, following revelations in newly released files.

Martin Nowak Sanctioned for Jeffrey Epstein Involvement

The Faculty of Arts and Sciences announces disciplinary actions.

U.S. Military to Sever Some Academic Ties with Harvard, Hegseth Says

The defense department will discontinue graduate-level professional programs for active-duty service members.

Explore More From Current Issue

Man in a suit holding a pen, smiling, seated at a desk with a soft background.

A Congenial Voice in Japanese-American Relations

Takashi Komatsu spent his life building bridges. 

A stylized illustration of red coral branching from a gray base, resembling a fantastical entity.

This TikTok Artist Combines Monsters and Mental Heath

Ava Jinying Salzman’s artwork helps people process difficult feelings.

Four men in a small boat struggle with rough water, one lying down and others watching.

The 1884 Cannibalism-at-Sea Case That Still Has Harvard Talking

The Queen v. Dudley and Stephens changed the course of legal history. Here’s why it’s been fodder for countless classroom debates.