David Weitz investigates how glass flows

Physicists find a better way to visualize molecular behavior in glass as it cools.

The swirls in this hand-blown glass are a visual reminder of its latent fluidity.
The behavior of tiny, deformable spheres packed together has helped scientists understand how glass flows.

Glassblowers can pull superheated glass fresh from a furnace just like taffy, blow bubbles in it, and fashion beautiful objects by manipulating it while it flows. But there is something curious about glass. Molten glass, as it cools and vitrifies, never actually becomes a solid in the classic sense: glass molecules never lock themselves into a crystalline structure the way a true solid would. Instead, they just stop flowing, like honey in the freezer. (In fact, when honey is very cold, it behaves like glass.)

When scientists want to understand the properties of glass--what makes it flow at one temperature and jam up at another, for example--they use as a model a colloidal fluid: a liquid filled with tiny particles, or colloids, suspended evenly in it (milk is a familiar example). By packing in more and more colloidal particles, they make the suspension denser and slower to mimic glass cooling.

“The behavior of single molecules in glass can’t be observed,” says Mallinckrodt professor of physics David Weitz, an expert in experimental soft condensed matter. “But the colloidal particles, which are a thousand times larger, can be seen under a microscope,” allowing researchers to visualize the behavior of glass at the molecular level under different conditions of temperature or stress.

But traditional colloidal models fail to mimic actual behavior at a certain point---solidifying or locking up rapidly in a way that true glass, which flows ever more slowly as it cools, does not. Weitz has therefore figured out how to create a colloid that behaves more like glass under near-solid, low-flow conditions by using soft, compressible particles made of gelatin in the fluid. The deformability of these Jell-O-like particles, says Weitz, is analogous to the vibrations and internal motions of real glass molecules, which are made of many atoms that allow them to fluctuate in size and shape.

Even without understanding the physics, experienced glassblowers know that once they start pulling glass in one direction, they can keep stretching it as it cools, but only by applying greater and greater force. The colloidal model, in its faithfulness to the way real glass flows, has allowed researchers to visualize the way individual molecules behave--to “see” how they deform as they literally slide past each other under pressure. This is a “huge insight,” says Weitz: that “a lot of what dominates” glass’s fascinating behavior depends “on the way squishy spheres pack together.”

Read more articles by Jonathan Shaw
Related topics

You might also like

U.S. Appeals Court Preserves NIH Research Funding

The court made permanent an injunction preventing caps on reimbursement for overhead costs.

Eating for the Holidays, the Planet, and Your Heart

“Sustainable eating,” and healthy recipes you can prepare for the holidays.

Getting to Mars (for Real)

Humans have been dreaming of living on the Red Planet for decades. Harvard researchers are on the case.

Most popular

Harvard Faculty Group Proposes Limits on A Grades

The grade inflation measure requires a full faculty vote, expected in the spring.

Harvard Experts Say For Investors and the Power Grid, AI Is Risky Business

At the Institute of Politics, economists warn that AI’s rapid expansion could strain energy infrastructure, inflate capital cycles, and expose investors to risk.

Martin Nowak Sanctioned for Jeffrey Epstein Involvement

The Faculty of Arts and Sciences announces disciplinary actions.

Explore More From Current Issue

Lawrence H. Summers, looking serious while speaking at a podium with a microphone.

Harvard in the News

Grade inflation, Epstein files fallout, University database breach 

A bald man in a black shirt with two book covers beside him, one titled "The Magicians" and the other "The Bright Sword."

Novelist Lev Grossman on Why Fantasy Isn’t About Escapism

The Magicians author discusses his influences, from Harvard to King Arthur to Tolkien.

A silhouette of a person stands before glowing domes in a red, rocky landscape at sunset.

Getting to Mars (for Real)

Humans have been dreaming of living on the Red Planet for decades. Harvard researchers are on the case.