David Weitz investigates how glass flows

Physicists find a better way to visualize molecular behavior in glass as it cools.

The swirls in this hand-blown glass are a visual reminder of its latent fluidity.
The behavior of tiny, deformable spheres packed together has helped scientists understand how glass flows.

Glassblowers can pull superheated glass fresh from a furnace just like taffy, blow bubbles in it, and fashion beautiful objects by manipulating it while it flows. But there is something curious about glass. Molten glass, as it cools and vitrifies, never actually becomes a solid in the classic sense: glass molecules never lock themselves into a crystalline structure the way a true solid would. Instead, they just stop flowing, like honey in the freezer. (In fact, when honey is very cold, it behaves like glass.)

When scientists want to understand the properties of glass--what makes it flow at one temperature and jam up at another, for example--they use as a model a colloidal fluid: a liquid filled with tiny particles, or colloids, suspended evenly in it (milk is a familiar example). By packing in more and more colloidal particles, they make the suspension denser and slower to mimic glass cooling.

“The behavior of single molecules in glass can’t be observed,” says Mallinckrodt professor of physics David Weitz, an expert in experimental soft condensed matter. “But the colloidal particles, which are a thousand times larger, can be seen under a microscope,” allowing researchers to visualize the behavior of glass at the molecular level under different conditions of temperature or stress.

But traditional colloidal models fail to mimic actual behavior at a certain point---solidifying or locking up rapidly in a way that true glass, which flows ever more slowly as it cools, does not. Weitz has therefore figured out how to create a colloid that behaves more like glass under near-solid, low-flow conditions by using soft, compressible particles made of gelatin in the fluid. The deformability of these Jell-O-like particles, says Weitz, is analogous to the vibrations and internal motions of real glass molecules, which are made of many atoms that allow them to fluctuate in size and shape.

Even without understanding the physics, experienced glassblowers know that once they start pulling glass in one direction, they can keep stretching it as it cools, but only by applying greater and greater force. The colloidal model, in its faithfulness to the way real glass flows, has allowed researchers to visualize the way individual molecules behave--to “see” how they deform as they literally slide past each other under pressure. This is a “huge insight,” says Weitz: that “a lot of what dominates” glass’s fascinating behavior depends “on the way squishy spheres pack together.”

Read more articles by Jonathan Shaw

You might also like

How AI Is Reshaping Supply Chains

Harvard Kennedy School lecturer on using AI to strengthen supply chains

Do Mitochondria Hold the Power to Heal?

From Alzheimer’s to cancer, this tiny organelle might expand treatment options. 

How Do Single-Celled Organisms Learn and Remember?

A Harvard neuroscientist’s quest to model memory

Most popular

Why Harvard Needs International Students

An ed school professor on why global challenges demand global experiences

A New Narrative of Civil Rights

Political philosopher Brandon Terry’s vision of racial progress

The Latest In Harvard’s Fight with the Trump Administration

Back-and-forth reports on settlement talks, new accusations from the government, and a reshuffling of two federal compliance offices

Explore More From Current Issue

Man, standing in small group of people outside the courthouse, holding a sign that reads "HANDS OFF HARVARD" in red letters

Harvard’s Summer in Court

What Columbia’s settlement means for the University

Room filled with furniture made from tightly rolled newspaper sheets.

A Paper House in Massachusetts

The 1920s Rockport cottage reflects resourceful ingenuity.

James Muller in white lab coat leaning on railing in hospital hallway.

Free Speech, the Bomb—and Donald Trump

A Harvard cardiologist on the unlikely alliances that shaped a global movement to prevent nuclear war