New technologies could one day potentially reengineer species in the wild

New technologies could one day potentially reengineer species in the wild.

Return to main article:

This July, Wyss Institute fellow Kevin Esvelt and Winthrop professor of genetics George Church coauthored a paper in the journal eLife outlining how new technologies containing self-replicating pieces of DNA could potentially be used to genetically reengineer entire species in the wild. A recently discovered bacterial system called CRISPR-Cas, named after the DNA and proteins involved, has allowed scientists to make highly specific genetic modifications with greater ease than ever before (see harvardmag.com/genomic-14). As Church and colleagues predicted in the recent paper, certain genetic changes that themselves include a CRISPR-Cas system could copy themselves in a process called a “gene drive,” enabling a modification to spread through an entire species during the course of many generations. Scientists might one day be able to alter or even eliminate entire species—reengineering herbicide susceptibility into populations of resistant weeds, for instance, or suppressing malaria mosquitoes or invasive plants.

 Church’s technical paper was published simultaneously with a policy paper in Science that assessed the technology’s possible impacts. The environmental and security effects of gene drives are still unclear, wrote the authors, a team of scientific and legal experts that included technologists Church and Esvelt, Ph.D. ’10, evolutionary ecologist and former National Science Foundation director for population biology and physiological ecology James P. Collins, and lead author Kenneth Oye, Ph.D. ’83, professor of political science at MIT. Moreover, regulatory gaps remain: domestic and international policies, built narrowly around lists of dangerous toxins or organisms, fail to address the uniquely broad character of gene drives. The authors made 10 recommendations for managing environmental and biosecurity risks. Certain types of gene drives might reverse prior genetic changes or immunize organisms from further modification, for instance, and new regulatory structures might adopt broader definitions of biological impact. The authors also called for a public discussion on how the new technology ought to be used. “For emerging technologies that affect the global commons, concepts and applications should be published in advance of construction, testing, and release,”  they wrote in conclusion. “Lead time will allow for broadly inclusive and well-informed public discussion to determine if, when, and how gene drives should be used.” 

Related topics

You might also like

The Secrets Glaciers Tell

A Harvard class explores the glacial legacy of pollution emitted by the Roman Empire

From Jellyfish to Digital Hearts

How Harvard researchers are helping to build a virtual model of the human heart

Creepy Crawlies and Sticky Murder Weapons at Harvard

In the shadows of Singapore’s forests, an ancient predator lies in wait—the velvet worm.

Most popular

Harvard Symposium Tackles 400 Years of Homelessness in America

Professors explore the history of homelessness in the U.S., from colonial poor laws to today’s housing crisis

Harvard’s Class of 2029 Reflects Shifts in Racial Makeup After Affirmative Action Ends

International students continue to enroll amid political uncertainty; mandatory SATs lead to a drop in applications.

What Trump Means for John Roberts’s Legacy

Executive power is on the docket at the Supreme Court.

Explore More From Current Issue

Students in purple jackets seated on chairs, facing away in a grassy area.

A New Prescription for Youth Mental Health

Kenyan entrepreneur Tom Osborn ’20 reimagines care for a global crisis.

A woman (Julia Child) struggles to carry a tall stack of books while approaching a building.

Highlights from Harvard’s Past

The rise of Cambridge cyclists, a lettuce boycott, and Julia Child’s cookbooks